
JMonitor: A monitoring tool for distributed systems

Maurício G. Penteado

Computer Science Department

Federal University of São Carlos

São Paulo, Brazil

mauriciopenteado@dc.ufscar.br

Luís Carlos Trevelin

Computer Science Department

Federal University of São Carlos

São Paulo, Brazil

trevelin@dc.ufscar.br

Abstract — Immersive, interactive, and collaborative distributed

applications, due to their real time and multi-platform

characteristics, require a monitoring structure of their

functionalities during the development period, which is not fully

available in the current monitoring systems, which are usually

specific of the languages and platforms in which they are made

available. Monitoring systems that require synchronism of the

distributed objects during the processing is a complex task. It is

often difficult to check the correct execution of the system. It

might be useful for developers and users of such systems to have

the ability of identifying, for example, if the reason for the system

delay is due to the abusive use of a resource or due to

programming mistakes; the identification of which object has

crashed, compromising the system as a whole. Distributed object

systems, also known as SOA (Service Oriented Architecture),

generally use middleware of the broker type in their

infrastructure and can have a dynamic number of connected

clients or servers when running. There are, in the literature,

several tools for the monitoring of performance, resources,

debugging, and support, among others, of such systems.

Nevertheless, the tools available in the literature are limited to

programming languages or platforms that are able to process the

monitoring agents related to them. In the paper, a tool for the

monitoring of distributed object systems is proposed, based on

communication described in XML documents, which allows

language and platform independence in the such systems

development.

Key-words: Distributed Systems; Broker; JAMP; SOA;

Monitoring Systems

I. INTRODUCTION AND MOTIVATION

The union of object orientation with distributed systems
originated the area of the distributed object systems. The base
for this model is the fundamental concept of objects, which can
be clients, servers, or both. Objects defined as entities with
specific behavior and configurable attributes can be combined
in a simple way in order to provide the ability to execute
customized services.

The middleware's of broker type can be seen as essential
components of distributed object systems. These broker's have
the function of managing the communication among the
different objects of the system.

Distributed objects can storage their communication
interfaces through the brokers, providing a way of tracking
them. Objects can also search for interfaces that have been

already registered in the broker. Through such interfaces, the
consumption of the provided services by remote objects can be
performed.

When the architecture of the distributed system uses
provider and consumer objects, it is possible confirm that such
systems are structured under the SOA model (Service Oriented
Architecture).

There are several available technologies for the
development of SOA systems, such as: CORBA, RMI, JINI,
Web Services, among others [1][2].

The JAMP (Java Architecture for Media Processing)
platform [5], developed to provide services for the distribution
of different types of media for distributed object systems. The
JAMP platform have a broker for the management of the
distributed objects, as well as a set of frameworks and servers
that help the conception and maintenance of such systems.

For the development of systems with interactive,
immersive, and collaborative characteristics, the LAVIIC
(Immersion, interactivity, and collaboration lab) is available at
the Federal University of São Carlos, which provide a CAVE
and resources for the processing of virtual distributed
environments [3][4].

Virtual Distributed Environments (VDEs) are characterized
by the fact that they have resources that are accessible,
synchronous, as well as distributed, in different computers
connected by communication networks. Since these
environments allow the development using different
programming languages, the task of monitoring them is a
complex activity.

Monitoring such systems can be critic for the development
and maintenance of such types of systems, allowing the
identification of errors that lead objects to the abusive use of
resources, faults regarding their functions, or even the
interruption of their operation. Such characteristics can
compromise the execution of the system as a whole, in case of
synchronous systems.

In face of the resources provided by the JAMP and similar
platforms, it was identified the need for a tool that is able to
monitor: (i) simple and customizable data to the distributed
object systems; (ii) complex data, such as the usage of the
available resources. This tool must also be ready to monitor
different programming languages.

The development of the JMonitor tool, showed in this
paper, is aimed to fulfill this need. JMonitor allows to follow
up the information of the distributed object systems. From
simple data, such as variable values, to complex data, such as
the availability and usage of resources, as well as other
information, can be reported using JMonitor.

II. RELATED WORK

There are several projects that investigates different types
of monitoring functions for distributed object systems. The
techniques and presentations of the project of Karunamoorthy
[6], PerfMoon[7], CENNI [8], among other existing ones, are
examples in this category.

In Karunamoorthy’s project [6], approaches for the
acquisition of descriptive data regarding the resources provided
to distributed object systems are reported. Such approaches use
the JINI platform as infrastructure. The approaches consist of
recognize and provide the computational resources used where
the distributed objects are being executed, in a centralized way.
Nevertheless, monitoring customization is not allowed.

PerfMoon [7], on the other hand, uses monitoring modules
at a kernel level in its architecture. These modules must be
enabled in the systems to be monitored, providing RMI
communication interfaces prepared to receive invokes
originated from the central monitoring daemon. However,
developing new modules for the monitoring of customized
characteristics are highly complex tasks.

In CEMMI[8], the JMX platform and MBeans components
are used to provide a distributed monitoring system based on
rules, which can be customized according to the needs of the
object to be monitored. For CEMMI, the use of the JMX
platform does not allow the monitoring of simple variables for
“non Java” applications.

In the architecture of the JMonitor tool addressed in this
paper, any data provided by distributed object systems can be
monitored by means of XML files. This allows an easy
customization, as well as language and platform independence.

III. CHALLANGES

The architecture of distributed object systems are quite
similar to the client-server architecture, which are distinguished
by the presence of a broker. If a broker is available in a
computer network, any computer in the network can use it in
order to provide or use services. This is can be performed of its
server objects or by means of its client objects.

The computers in the network using the broker can be
geographically distant from each other. Also, the amount of
client objects using services can be dynamic. A tool can be
added to the broker to improve it, if it provide data about: (i)
which services are registered in a certain moment; (ii) the
amount of the usage from available resources and used
resources, and; (iii) debugging data.

The challenges in acquiring and making available such
information are closely related to the development of the
distributed object system to be monitored.

In a development level, client objects of a given distributed
system must periodically send the information required by the
Server object periodically. The server object must create a
document for the monitoring task. This document will make its
information available, as well as the information from all its
clients. Such document must be made available periodically.

IV. JAMP PLATAFORM

The JAMP platform is contextualized in Figure 1, among
other platforms that provide middleware of broker type. It is
also possible to identify in Figure 1 that the JAMP broker is
named JBroker.

JBroker extends the Java RMI and Java Serialization
technologies. Such extension provides mechanisms to find and
distribute the objects. These mechanisms allow the storage of
the service providers and the invoking of such services by the
consuming objects.

Figure 1. Comparisons among platforms for distributed systems.

The JMonitor tool was codified over the infrastructure of
the JAMP platform and it will be made available as an
additional JAMP service, as shown in Figure 1.

Although JMonitor is structured based on the JAMP
platform, it is important to emphasize that programmers
applications intending to use it do not necessary need to be
structure your applications based on the same platform. The
only requirement is that such applications must make available
the information to be processed by means of XML documents,
generated according to the validating specifications.

V. IMPLEMENTATION

The implementation of the JMonitor tool can be divided
into three modules and two auxiliar files that control the
communication, as shown in Figure 2.

The modules are denominated: JMonitorManager,
JMonitorAgent, and JMonitorAppletAgent. The auxiliar files
are JMonitor.dtd and JMonitor.xml.

Figure 2. JMonitor, communication among modules.

A. The JMonitorAgent Module

This module was prepared to be executed with the
distributed object thats providing services. As explained in item
III, programmers intending to use the JMonitor tool must
prepare their systems for this.

In such systems, server objects must collect the information
of all client objects by periodic and customized means. Once
the information is collected, the servers must generate or
update an XML file reporting the information to be monitored.

A thread was developed in the JMonitorAgent module to
constantly check whether the markup file was generated or
received any update by the server object. This file is named
JMonitor.xml.

When any modification is detected in this file, the
JMonitorAgent module transforms the file into a set of bits
prepared to be sent to the managing module. This operation is
carried out by means of serialization techniques.

After the file serialization, the JMonitorAgent invokes an
RMI call to the receiveProperties method, from the
JMonitorManager. This way, the JMonitorAgent sends a set of
bits representing the XML file to the managing module.

B. JMonitorManager Module

The JMonitorManager managing module was prepared to
receive RMI calls originated in remote objects. By means of
the receiveProperties call, the module receives the set of bits
sent by the JMonitorAgent. Once this set of bits is received,
JMonitorManager performs the de-serialization of the
JMonitor.xml file.

After finishing the de-serialization of the file, the
JMonitorManager module checks whether the same follows the
established rules in the JMonitor.dtd file.

In JMonitor.dtd, the rules that validate the JMonitor.xml
file are defined. This file allows checking the compatibility of

the received file with the type of file expected by the JMonitor
tool. Once the validation is accepted, the received file is then
transformed into an object of the Properties class.

An object of the Properties class represents all the
properties of the distributed system that were marked in the
JMonitor.xml file. This object has the identification and
information related to the server object. It also has the
identification and information of each client connected to it.

Together all the information regarding the markup file, an
object of the Properties class also receives a lifespan,
identifying how long such information is taken as valid. If the
information is not updated within the lifespan of the object, the
object is destroyed.

The JMonitorManager module has the ability to store
Properties objects representing all the systems that are being
monitored at a given moment. By means of a thread linked to
the module, the lifespan checking of such stored properties is
performed.

In case the lifespan is expired, the Properties object is
destroyed. Otherwise, the Properties object remains available to
be sent to the visualization module. This is performed by
means of invokes periodically originated in the visualization
module.

C. The JMonitorAppletAgent Module

The JMonitorAppletAgent visualization module was
developed with an applet application accessible to any
computer in the network that can connect to the JBroker. This
module has the function of making the monitored information
available to the developers and users of the monitored systems,
in an intuitive way.

In the monitoring applet there are graphic generators that
intuitively show: (i) RAM memory loads; (ii) swap memory
loads; (iii) average processor usage load, and; (iv) network
interface usage. The system that runs the distributed object of
interest contains such information. This object can be selected
from the list of objects that are being monitored.

The selectable list of distributed objects is disposed in an
alphabetic and hierarchical way. In the first level, it
demonstrates a first service provider distributed, as well as all
its clients. In the second level, a second service provider object,
also with its clients, and so on, until all the monitored systems
are selectable.

The list of monitored properties is displayed under the list
of selectable distributed objects. When a distributed object is
selected, its properties are made available in this second list,
keeping constant update when new values are registered.

The selection of the first list also updates the graphic
generators in order to correctly display the data of the selected
system.

Besides the applet, the JMonitorAppletAgent also has a
thread that periodically invokes the informProperties call of the
managing module, through the RMI. This way, all the valid
Properties objects stored in the manager are retransmitted to the
applet.

Through the applet, it is possible to visualize the
information of the server distributed objects, as well as
information of the remote clients connected to it. Such
information is related to: (i) usage and availability of the
processors used in the system; (ii) variable values, and; (iii)
informative details, such as the email of the person in charge of
a system. Such examples of information can be visualized by
any computer in the network, through the applet being
executed in union with the JBroker and the remaining modules
of the JMonitor tool.

D. JMonitor.dtd and JMonitor.xml Files

These two files are necessary for the JMonitor tool runs. By
using them, it is possible to guarantee that documents sent by
users are in accordance with the documents the tool is prepared
to process.

A part of the JMonitor.dtd file can be seen in Figure 3. This
file is used by the managing module and has rules that validate
the JMonitor.xml file. Figure 4 shows a JMonitor.xml example
file reporting information of a fictitious system.

It is possible to observe in Figure 3 that the systems must,
obligatorily, inform the name of the service server object to be
monitored, as well as its lifespan. Such information is used by
the JMonitor tool in order to determine how long the
information in this document should be considered valid.

In case the system to be monitored might want to use the
graphic generators in the applet, memory-ram-total, memory-
ram-free, memory-swap-total, memory-swap-free, cpu-used,
recv_packages, and trans_packages elements must be
informed. Nevertheless, the use of such graphic generators is
optional to the use of the tool.

Figure 3. JMonitor.dtd.

According to the rules of the JMonitor.dtd file, the client
element is also optional. In case it exists, it must obrigatorily
have a unique name among the client objects connected to a
same server object. The use of graphic generators related to the
system that processes the client distributed object is also
optional.

The data of the static-properties element are registered in
pairs of name and value. These data are prepared to receive
information such as: (i) email of a person in charge of the

system; (ii) where the access to the source code can be
obtained; (iii) relation of dependencies to be installed, etc. Such
information varies according to the requirements of the
developers and users of the systems.

The change of the defined values with the dynamic-
properties element is checked and loaded at each update
performed by the periodic internal events of the JMonitor tool.
These dynamic-properties elements are suitable to follow the
change of values of the variables for debugging purposes.

The graphic generator elements also use this way of
checking and loading information at each update.

It is possible to observe in Figure 4 that the JMonitor.xml
file was generated with a single connected client object. This
information is marked by the <client> and </client> tags. In
case no client object exists, the tool is ready to keep the
monitoring of the server object only.

Figure 4. JMonitor.xml.

VI. CASE STUDY

In order to illustrate the usage of the JMonitor tool, a
system that allows the visualization and iteration in real time of
3D distributed modeling was developed. This system can be
used at different computers of the network. This developed
system follows the standards of distributed virtual
environments [9].

The case study also allows the navigation under
environments prepared to provide a higher immersion
sensation, such as CAVES. Such environments usually have
graphic clusters that control their operation.

Graphic clusters are sets of computers that have projectors
and graphic cards, which are set in a customized way in order
to aggregate its resources and provide the illusion of a single
computer with large processing capability.

These environments parallelize the image processing in
such a way that each computer of the graphic cluster becomes
responsible for the processing and projection of a part of the
image. This technique allows the processing division among
the nodes of the cluster improving the quality of the final image
[10]. Such technique is known as multi-projection.

In the case study each node of the graphic cluster processes
a client distributed object of the VDE under test.

The server distributed object is kept ready to receive
interaction actions, originated in any network client. It also has
the function of distributing the performed interaction in the
environment to passive clients of this action. This server object
keeps the environment synchronized.

In order to support the server object, JBroker performs the
function of coordination and locate the other client and server
objects spread in the network.

In the case study, there are client distributed objects ready
to be executed in graphic clusters. Such objects have camera
tuning limited to its portion of the image.

Also, for the case study, there are client objects prepared to
execute in personal computers, set to process the whole image.

For the case study execution, two portable personal
computers were used, as well as a graphic cluster with three
nodes, totalizing five client objects connected to the server. The
graphic cluster can be observed in Figure 5.

Figure 5. Graphic cluster used for tests.

Figure 6 shows an image of the whole environment in
execution, including the two portable computers.

Figure 6. All clients interacting.

It is possible to observe in Figure 6 that the images area
placed in the same direction, independently of the multi-
projection of the CAVE or of the generated projections in the
portable computers. The movement interaction propagated by
all clients is a characteristic of the developed test system.

It is also possible to observe in Figure 6 that the multi-
projections of the CAVE and the projections generated in the
personal computers have different approximation values
(zoom). This characteristic was developed in order to improve
the exploration of the image limits offered by the CAVE.

The communication of the JMonitor tool can be visualized
in Figure 7. In this figure JMonitor is monitoring the
distributed objects of the case study.

Figure 7. JMonitor making information of the case study available.

Together with the code of the client objects, statistical
verifications of the systems and customized information
collection it was also coded. According to the codification,
such data are periodically updated and sent to the server object.

The verification and collection of data referring to the
system that executes the server distributed object were also
developed.

Periodically, the server object gathers the information
collected from all clients. Together with the information of the
server object itself, the server generates or updates the
JMonitor.xml file prepared to be captured by the JMonitor tool.
This tool is responsible to provide the available information in
the network. It's performed in an intuitive way, to developers
and users of the system.

In Figure 8, the visualization applet of the JMonitor tool is
demonstrated under execution, monitoring the distributed
objects of the case study. In this figure, it is possible to observe
that a client object is selected. This action activates the listing
of the static and dynamic properties of the selected object, as
well as the generation of the graphics related to the resources of
the system that processes it.

Figure 8. The JMonitor tool monitoring information of the case study.

VII. RESULTS

The results regarding the use of the JMonitor tool in the
case study were satisfactory. The JMonitor tool helped in the
identification of several programming errors during the
development of the VDE system under test. It also allowed the
monitoring of the variables values codified in different
languages.

The communication interruption of a client is easily
observed by using JMonitor. In this case, the lifespan of the
information that is not updated does not take long to expire.
This way, the object with interrupted execution becomes
unavailable in the listing of the monitoring applet, which is
quite intuitive.

The graphic generators of the tool showed similar graphs to
the real use of computational resources used in the remote
computers.

These graphics are similar, although they present delays
caused by the network and by the processing of XML

documents. Such delays can be minimized with the correct
tuning of the periodicity defined for the updates.

VIII. CONCLUSIONS

In this paper, techniques for the acquisition and
demonstration of different properties aggregated to distributed
object systems were addressed.

Such properties can be useful in the identification of
abnormal behavior in the use of resources, in the processing of
the systems, as well as in the dissemination of the information
in the network.

The JMonitor tool was implemented based on infrastructure
offered by the JAMP platform. It can be used by any
distributed system that generates information marked through
XML documents. This allows the systems to be monitored to
be independent of platform and programming language.

REFERENCES

[1] Al Belushi, W.; Baghdadi, Y.; , "An Approach to Wrap Legacy
Applications into Web Services," Service Systems and Service
Management, 2007 International Conference on , vol., no., pp.1-6, 9-11
June 2007

[2] Rafe, V.; Rafeh, R.; Fakhri, P.; Zangaraki, S.; , "Using MDA for
Developing SOA-Based Applications," Computer Technology and
Development, 2009. ICCTD '09. International Conference on , vol.1,
no., pp.196-200, 13-15 Nov. 2009

[3] Prado, G.M.; Zorzo, S.D.; Trevelin, L.C.; de Paiva Guimaraes, M.;
Gnecco, B.B.; , "Interactive architecture for interactive social inclusion
applications," Systems, Man, and Cybernetics (SMC), 2011 IEEE
International Conference on , vol., no., pp.1280-1285, 9-12 Oct. 2011

[4] M. Francischetti-Corrêa, L.C. Trevelin, and M P Guimarães, "Molecular
Visualization with Supports of Interaction, Immersion and Collaboration
among Geographically-Separated Research Groups" in Enterprise
Information Systems. Springer Berlin Heidelberg, v. 221, p. 128-135,
2011.

[5] orr a . . c p ctor J. . r v lin . . aiva i ar s, M.; ,
"Immersive environment for molecular visualization to interaction
between research groups geographically dispersed," Applied Sciences in
Biomedical and Communication Technologies (ISABEL), 2010 3rd
International Symposium on , vol., no., pp.1-5, 7-10 Nov. 2010.

[6] Karunamoorthy, D.; Devinuwara, N.; , "Monitoring & manging dynamic
distributed systems," Electronics, Circuits and Systems, 2005. ICECS
2005. 12th IEEE International Conference on , vol., no., pp.1-4, 11-14
Dec. 2005.

[7] Jian Xu; Manwu Xu; , "A Performance Monitoring Tool for Predicting
Degradation in Distributed Systems," Web Information Systems and
Mining, 2009. WISM 2009. International Conference on , vol., no.,
pp.669-673, 7-8 Nov. 2009.

[8] Jingxin Peng; Jian Cao; , "ECA rule-based configurable frame of
distributed system monitoring," Progress in Informatics and Computing
(PIC), 2010 IEEE International Conference on , vol.1, no., pp.674-677,
10-12 Dec. 2010.

[9] Ali, A.E.E.; El-desoky, A.I.; Salah, M.; , "An allocation management
algorithm for DVE system," Computer Engineering & Systems, 2009.
ICCES 2009. International Conference on , vol., no., pp.489-494, 14-16
Dec. 2009.

[10] Colombo Dias, D.R.; La Marca, A.F.; Moia Vieira, A.; Neto, M.P.;
Brega, J.R.F.; de Paiva Guimaraes, M.; Lauris, J.R.P.; , "Dental arches
multi-projection system with semantic descriptions," Virtual Systems
and Multimedia (VSMM), 2010 16th

